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INTRODUCTION 
 
One of the most difficult topics for undergraduate students 
taking their first stochastic operations research or simulation 
course is non-terminating systems analysis [1]. At issue is the 
student’s ability to understand that output data generated from 
a non-terminating system’s simulation will have both transient 
and steady-state data, ie the data are not independently and 
identically distributed data (iid). Additionally, they are 
uncomfortable or inexperienced with utilising approximation 
tools (simulation) that rely on ad-hoc methodologies (eg 
graphical techniques to distinguish between transient and 
steady-state behaviour) and statistical laws (eg the central limit 
theorem) for parameter estimation. This is understandable 
since, more often than not, undergraduate students have only 
used mathematical modelling techniques that are guaranteed 
(as long as the underlying assumptions of the technique are not 
violated) to generate one-and-only (or hopefully, the optimal) 
solution to a problem. In contrast, simulation output analysis 
for non-terminating systems may generate several different 
approximations for the unknown parameter of interest. 
 
Complicating the issue is the inability of students to validate 
their results. In general, these students are not comfortable with 
the amount of judgement/skill/experience required to evaluate 
their findings (eg confidence intervals about the parameters of 
interest). Simulation analysis (particularly simulation output 
analysis of non-terminating systems) tends to be too ad-hoc for 
the typical undergraduate student; while non-terminating 
output analysis is too important a topic to ignore when teaching 
simulation modelling courses. In the authors’ opinion, ignoring 
this topic when teaching simulation modelling is equivalent to 
generating inadequate simulation practitioners. 
 
The authors present a set of experiments to help identify the 
pitfalls of performing bad transient analysis when estimating 

steady-state parameters via the method of independent 
replications. The intention of the experiments is to demonstrate 
to industrial engineering undergraduate students that failure to 
delete transient data (or not enough transient data) will lead to 
poorer confidence intervals than confidence intervals generated 
when the student takes the time to more accurately identify and 
discard transient data.  
 
In fact, the authors’ goal is to demonstrate that these 
confidence intervals are more likely to not cover the true mean, 
or precision (half-width size) will be less (greater half-width 
size) than the confidence intervals generated when transient 
data are discarded. The authors’ experiments are designed for 
two classes of non-terminating systems where the authors 
perform what they define as perfect transient analysis. While 
performing the experiments, the authors also explore the 
impact on confidence interval generation when the analyst has 
run the simulation long enough to generate what is defined as 
perfect run length versus not running the simulation long 
enough – insufficient run length. The results are surprising: for 
those cases where transient analysis is carried out badly (or 
even ignored), the confidence intervals provide coverage at 
greater precision than those cases where perfect transient 
analysis is performed. 
 
The remaining sections of the paper are in the following order: 
 
• The background section expands upon the motivations for 

this research; 
• The definitions section delineates what the authors mean 

by performing transient analysis badly and they present 
their definitions of perfect transient point, worst-case 
transient analysis and perfect run length; 

• The methodology, results and analysis section defines the 
experiments that have been performed, how definitions were 
put into practice and the resulting confidence intervals; 
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• The conclusions and future research section is a 
discussion of the results; some questions have been posed 
for educators and the avenues of future research that the 
authors wish to explore. 

 
BACKGROUND 
 
Figure 1 depicts a high-level concept map for teaching the 
confidence interval generation of terminating and non-
terminating systems [2]. This map is geared towards an upper-
level undergraduate course since several of the more 
mathematically complicated techniques available for 
generating confidence intervals are omitted from the map. But 
even with those techniques omitted, one can see the complexity 
of the topics and their links. This may be why some researchers 
have suggested that simulation not be taught at the 
undergraduate level or that the topics of modelling and analysis 
be split between two required courses [3]. However, several 
topics could be covered as prerequisite knowledge, such as 
those topics found in engineering statistics and stochastic 
operations research or queuing courses. This is the case at the 
University of Oklahoma, Norman, USA. The undergraduate 
programme in industrial engineering has been revamped so  
that the simulation course required for the industrial 
engineering students is incorporated into the fall semester of 
the senior year [1]. 
 

 
 
Figure 1: High-level concept map for generating confidence 
intervals of terminating and non-terminating simulations 
systems ([2], modified). 
 
The goal of this undergraduate course in simulation is to 
produce a graduate who is capable of applying a simulation 
language for the purpose of analysing, designing and 
comparing systems [1]. Consequently, the curriculum supports 
the concept map in Figure 1 where an engineering statistics 
course is taken in the spring semester of the sophomore year, 
an experimental design course is taken in the fall semester of 
the junior year, a stochastic operations research course and a 
quality engineering course are taken in the spring semester of 
the junior year, the required simulation course is taken in the 
fall semester of the senior year, and a graduate-level statistical 
analysis course in simulation is offered as an elective in the 
spring semester of the senior year. 

In this course sequence, the first introduction of simulation 
analysis is incorporated into the stochastic operations research 
course. Here, Markov chain analysis and queuing theory are 
followed by Monte Carlo simulation, discrete-event simulation 
logic and then, output analysis of non-terminating systems. The 
idea is to be able to have the student perform experiments so 
that queuing theory results of steady-state parameters can be 
contrasted against the results generated via a simulation 
experiment. At this point in the stochastic operations research 
course, the student is familiar with the concept of steady state 
and has enough of a statistics background to understand the 
importance of placing confidence intervals around results 
generated via statistical (simulation) experiments.  
 
A learn-by-doing assignment is then imposed upon the student. 
The student is required to take a spreadsheet approach for 
invoking discrete-event simulation logic and then, calculate an 
unknown parameter of interest (eg the average waiting time in 
queue) for an M/M/1/GD/∞/∞ system. The assignment also 
requires the student to perform transient analysis in Microsoft® 
Excel©. The student must calculate enough observations 
(address the issue of run length) of the unknown parameter so 
that a graph of the cumulative average for that unknown 
parameter is generated to assist the student in determining 
where in the output data the system exhibits steady-state 
behaviour. Based on the student’s judgement of where steady-
state begins, the student must then generate 20 independent 
simulation runs with the transient phase deleted from each of 
the 20 runs (the method of independent replications).  
 
Then, by the central limit theorem, the student may use the 
average from each of the 20 runs to calculate a 95% confidence 
interval of the unknown parameter. Armed with their 
confidence interval, students are to contrast the results against 
the closed-form solution (from queuing theory) for an 
M/M/1/GD/∞/∞ system. Hopefully, the closed-form solution is 
contained within their confidence interval, but, on average, 5% 
(or more) of the students in the class will generate confidence 
intervals that do not contain the closed-form solution. Those 
cases are used to illustrate several important points to the class: 
 
• A failure rate of at least 5% is to be expected since a 95% 

confidence interval implies that the true parameter will lie 
outside the confidence interval 5% of the time. 

• Failure to delete enough transient or insufficient run 
lengths may lead to poorly constructed confidence 
intervals. Thus a greater than 5% failure rate may be 
detected since some students:  

 
a. May have performed their transient analysis poorly 

(so they do not have iid observations); 
b. May not have generated enough observations in 

steady state (insufficient run lengths); 
c. Some students may have done both (a) and (b). 

 
• A greater than 5% failure rate could also be attributed to 

the confidence interval method invoked: the method of 
independent replications. Here, the transient deletion is 
treated as a constant across all runs. So, if the first run of 
the simulation just happens to have a shorter transient 
phase than any of the other runs, the sample means from 
each of the other runs will tend to underestimate the 
parameter of interest (initialisation bias in the method of 
independent replications). 

• The previous points bring one to the next point of interest. 
Attaining the stated level of coverage (95%) requires the 



  

 153 

confidence interval to rely upon normally distributed 
means, or at least approximately normally distributed 
means, from each replication. Thus, if the parameter of 
interest’s underlying distribution is not normally 
distributed, and the run length is not long enough for the 
central limit theorem to kick-in, less than 95% coverage is 
to be expected (see ref. [4]). Thus, increasing the run 
length and the number of runs may yield confidence 
intervals with coverage closer to the stated level of 
confidence (in this case, 95%). 

• If the error rate is greater than expected, the student 
should also question the algorithm used to generate the 
random numbers. The algorithm must be robust enough to 
yield uniformly distributed [0,1] random variates that do 
not repeat (long random number streams). This ensures 
that the exponentially distributed inter-arrival and service 
rates are iid. 

• For the M/M/1/GD/∞/∞ system simulated, the value of the 
steady-state parameter can be obtained from well-known 
queuing theory results; in practice, the true value is 
frequently unknown, which is the justification for 
performing simulation analysis. So, in practice, students 
will not be able to judge the validity of their results (ie the 
validity of their confidence intervals) against known 
parameters. They must either be confident in the output 
analysis techniques that they followed to obtain the 
estimate, or they must use some other reasoning 
mechanism to validate their results. One common 
reasoning approach applied in practice is to reduce the 
complexity of the system down to a system where well-
known results exist. Then, a comparison may be made 
between the simplified model’s well-known results and 
the output analysis results for the more complicated 
system. For example, if the more-complicated system (the 
system of study) has a machine that is subjected to 
breakdowns while the well-known system does not, the 
practitioner should expect the estimate for the average 
waiting time in queue of the more complicated system 
(the one that is simulated) to be greater than the well-
known result. 

 
In short, the confidence intervals for non-terminating 
parameters generated via simulation output analysis techniques 
will tend to be closer to the stated level of confidence if the 
student deletes enough transient, runs the simulation long 
enough, utilises more than 20 replications and has a parameter 
of interest that tends to be normally distributed. 
 
DEFINITIONS 
 
The goal of the experiments is to demonstrate the impact on 
confidence intervals (generated via the method of independent 
replications) when the analyst performs transient analysis 
badly. First, there needs to be agreement on how bad transient 
analysis should be defined; to offset this definition, there needs 
to be agreement on how perfect transient analysis should be 
defined. Additionally, definitions have to be developed that can 
be understood at the undergraduate level. 
 
It is proposed that a student is able to achieve perfect transient 
analysis when he/she identifies the point in the output data, 
such that from that point to the end of the simulation run, the 
average of the remaining data equals the true mean of the 
unknown parameter of interest. For example, if the student 
wishes to obtain an estimate of the true average waiting time in 
queue, perfect transient analysis equates to deleting enough of 

the initial data, such that the remaining data, when averaged 
(the sample mean from the data), equals the true mean.  
 
In order to investigate cases of performing transient analysis 
badly, it is agreed that the worst-case-transient analysis is to 
have the student/practitioner ignore (either intentionally or 
unintentionally) transient analysis altogether. In other words, 
one needs to investigate cases where the student/practitioner 
does not delete any initial data from the simulation runs and 
hence, the method of independent replications would see its 
worst case of initialisation bias.  
 
However, one also wishes to explore cases where the student/ 
practitioner just happens to overcome the initialisation bias of 
the worst-case-transient analysis by generating enough steady-
state data to offset the initialisation bias. So, cases will be 
explored where, even though the practitioner intentionally or 
unintentionally chose to ignore transient analysis, he/she still 
generated what is called the perfect run length. Then, the 
perfect run length is defined as the ability of the analyst to 
intentionally or unintentionally ignore transient analysis and 
yet, generate a simulation run whose data, when averaged 
across the entire run (the replication’s sample mean), equals 
that of the true mean. 
 
Note that while several transient analysis methods exist (see 
ref. [4]), a pilot run is used to determine transient analysis that 
will apply that warm up period (perfect transient point) across 
all runs. Then, for the method of independent replications, 
transient deletion in the remaining runs (replications) is treated 
as a constant (perfect transient point of the pilot run). 
 
Utilising a pilot run is also the approach to be taken for 
analysing perfect run length. In practice, the run length is 
highly influenced by the objectives of the simulation study and 
is typically determined via a pilot run of the simulation (and 
usually after transient analysis has been concluded). So again, 
as with the ad-hoc methodologies of transient analysis, run 
length selection is dependent upon the analyst’s ability to judge 
how long the simulation should be run. However, once run 
length is determined, it is fixed to uphold the method of 
independent replications requirement of fixed run lengths for 
all runs. Thus, for these perfect run length cases, a pilot run of 
the model is generated to determine the time of perfect run 
length and then, run the remaining simulations with the perfect 
run length time invoked as the stopping rule for all runs. 
 
METHODOLOGY, RESULTS AND ANALYSIS 
 
Two queuing systems cases are analysed, namely: 
 
• Case 1: M/M/1/GD/∞/∞ systems at three levels of ρ 

(=0.50, 0.75, 0.90); 
• Case 2: An M/M/s/GD/∞/∞ optimisation problem with 

λ=2/minute, µ=0.5/minute, a per server cost of $9/hour 
and a delay cost to the customer of $0.05/minute, at s=5 
and s=6, see [5]. 

 
The cases are chosen since well-known queuing theory results 
exist, and these systems are typically introduced in an 
undergraduate stochastic operations research course. The 
parameter of interest for Case 1 is the average waiting time in 
the queue. The Case 2 system types are characteristically used 
to introduce the formulation required to solve queuing 
optimisation problems. Here, the objective is to minimise the 
total expected cost in terms of the expected delay cost to the 
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customer as a function of the service level (the number of 
servers, s). In the queuing analysis, the formulation is straight-
forward (see ref. [5]), and a closed-form solution exists for the 
minimum expected total cost.  
 
For the given values of the Case 2 system, the minimum total 
expected cost occurs when s=5. Since the waiting cost to the 
customer and the per server costs are fixed, to solve the 
problem through simulation analysis is equivalent to 
determining a parameter estimate for the average waiting time 
in queue (Wq – the only unknown parameter). All cases were 
simulated via Arena 7.01 software (see ref. [6]), and analysed 
using Arena 7.01 and Microsoft® Excel©. 
 
For the systems of Case 1, the methodology is as follows: 
 
1. A pilot run of the model is made for the waiting time in the 

queue where the stopping rule for the pilot run is invoked 
when the average waiting time across the run equals the 
theoretical value. At this point, the simulation is 
terminated and the simulation’s run length is noted as the 
perfect run length. Then, 20 independent replications of 
the simulation model are generated with the perfect 
transient’s run length time utilised as the stopping 
condition for each of the 20 runs. The mean from each of 
the replications is then utilised to generate a 95% 
confidence interval about the average waiting time in 
queue. Table 1 lists the perfect run lengths identified in the 
experiment. 

2. Run lengths of 6,000, 20,000, 50,000 and 100,000 time 
units are utilised for all cases in order to identify the 
perfect transient point at various run lengths, and to allow 
the worst-case transient analysis (no deletion of transient) 
at various run lengths to be explored. Since the perfect run 
length determined for ρ=0.90 was found to be greater than 
100,000 time units, an additional case is utilised at a run 
length of 1,000,000 time units (see Table 2). 

3. For all run lengths of 2 above, (except perfect run length), 
perfect transient analysis is invoked to determine where in 
that particular run length, the average of the data equals 
the theoretical value (perfect transient point). The process 
is to export the output data of the simulation’s pilot run 
into an Excel spreadsheet and perform what one might call 
a reverse cumulative average.  
For example, with a run length of 20,000 time units, the 
first average obtained is of all of the output responses 
generated over the 20,000 time units. If this average equals 
the true mean, the entire run is considered to be in steady-
state. If not, the first observation is dropped and the 
remaining data are averaged. If the remaining data’s 
sample mean equals that of the true mean, then the 
simulation time for the second observation is noted as the 
perfect transient point. If not, the second observation is 
dropped from the data set and the process of dropping each 
successive observation is repeated until the perfect 
transient point is found.  
Table 2 lists the perfect transient points. It should be noted 
that for some run lengths, perfect transient cannot be 
found. For the run lengths of 20,000 time units and 50,000 
time units, the perfect transient points for ρ=0.50 are 
considerably greater than the perfect transient points for 
ρ=0.75. It should also be noted that for the run length of 
100,000 time units, the perfect transient point is 0.00 for 
ρ=0.50 and 81,009.49 for ρ=0.75. At first, this may seem 
to contradict the trend expected for longer run lengths 
within a particular ρ or for the same run length across 

different ρ’s. However, an explanation can be found given 
that only a pilot run of the simulation is used to determine 
the perfect transient point; transient itself is stochastic and 
thus, the perfect transient point is also stochastic. So while 
one would expect to see the perfect transient point increase 
as run lengths increase, since it is stochastic, it will move 
within a ρ at various run lengths and move for run lengths 
at various ρ’s. 

4. If a perfect transient point can be found for a particular run 
length, two more confidence intervals are generated via the 
method of independent replications, namely: 

 
- Firstly, when the replications have the perfect 

transient deleted but the total run length is terminated 
at the original run length’s time unit. For example, if 
the run length is 20,000 time units and the perfect 
transient point is found to occur at 12,210 time units, 
each replication will have a total of 7,790 time units 
worth of data available to calculate each replication’s 
sample mean. 

- Secondly, when perfect transient is deleted from each 
of the replications and the total run length is modified 
to equal that of the perfect transient’s time units plus 
the original run length’s time units. Following the 
previous example with an initial run length of 20,000 
time units, the new run length is 32,210 time units for 
each of the replications, where the first 12,210 time 
units are specified as warm-up (amount of simulation 
time deleted as transient) and the remaining 20,000 
time units of data are available for calculating each 
replication’s sample mean. 

 
Table 1: Worst-case transient analysis run lengths and perfect 
run lengths for Case 1 systems. 
 

Run 
Length ρ=0.50 ρ=0.75 ρ=0.90 

Perfect 
run length 62,314.95 16,709.11 965,052.03 

6,000 6,000 6,000 
20,000 20,000 20,000 
50,000 50,000 50,000 

100,000 100,000 100,000 

Worst-
case 
transient 
analysis 

  1,000,000 
 
Table 2: Perfect transient point of run lengths for Case 1 
systems (-- indicates not found). 
 

Run Length ρ=0.50 ρ=0.75 ρ=0.90 
6,000 -- -- -- 
20,000 12,210.40      868.93 -- 
50,000 28,675.29      672.31 -- 
100,000         0.00 81,009.49 -- 
1,000,000   250,537.13 

 
For Case 2, the methodology for Case 1 is invoked for two 
realisations of s=5 and s=6. Table 3 contains the prefect run 
length and worst-case transient analysis run lengths for the 
Case 2 systems. It should be noted that an additional run length 
of 500,000 time units is required when s=6, since perfect run 
length is found at 310,498.33 time units.  
 
Table 4 contains the perfect transient point of the run lengths 
and, as with some of the Case 1 systems, some run lengths for 
the Case 2 systems contain no perfect transient point. 
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Table 3: Worst-case transient analysis run lengths and perfect 
run lengths for Case 2 systems. 
 

Run Length s=5 s=6 
Perfect run 
Length 11,218.90 310,498.33 

6,000 6,000 
20,000 20,000 
50,000 50,000 

100,000 100,000 

Worst-case 
transient 
analysis 

 500,000 
 
Table 4: Perfect transient point of run lengths for Case 2 
systems (-- indicates not found). 
 

Run Length s=5 s=6 
6,000 -- 1251.18 
20,000 -- 14,400.08 
50,000 47,917.48 48,129.71 
100,000 76,131.37 33,915.82 
500,000  315,533.26 

 
Table 5 reveals the 95% confidence intervals generated for the 
worst-case transient analysis and perfect run lengths (as 
defined in Table 1) of the Case 1 systems. A shaded box 
indicates a run length that does not apply for that ρ. For each ρ, 
the confidence interval generated at perfect run length is 
indicated by a double-border cell. Of the 16 confidence 
intervals generated, only one failed to contain the true mean 
(Wq) and occurred at the 6,000 run length for ρ=0.75. It should 
be noted that this is the only confidence interval generated by a 
run length below perfect run length that does not contain Wq.  
 
Table 5: 95% confidence intervals of worst-case transient 
analysis run lengths and perfect run lengths for Case 1 systems. 
 

ρ=0.50 ρ=0.75 ρ=0.90 
 

 M/M/1 
Wq 

Run  
Length 0.500 2.250 8.100 

6,000 0.507+/-
0.019 

2.363+/-
0.095 

8.136+/-
0.810 

16,709.11  2.280+/-
0.056 

 

20,000 0.499+/-
0.008 

2.262+/-
0.050 

8.229+/-
0.446 

50,000 0.500+/-
0.007 

2.260+/-
0.042 

7.962+/-
0.230 

62,314.95 0.500+/-
0.004 

  

100,000 0.501+/-
0.003 

2.277+/-
0.028 

8.109+/-
0.176 

965,052.03   8.077+/-
0.070 

1,000,000   8.083+/-
0.069 

 
Readers should recall that, for all of the run lengths, no 
transient is deleted, yet 15 of the 16 confidence intervals 
contain the true mean. For ρ=0.50 and ρ=0.75, the best 
precision for the confidence interval is attained at the 100,000 
run length, while for ρ=0.90, it is attained at the 1,000,000 run 
length.  

These results indicate that there is no advantage to attaining 
perfect run length in terms of generating a confidence interval 
that contains Wq. However, the analysis does show that as the 
run length increases, the precision of the confidence interval 
improves. 
 
Table 6 contains the 95% confidence intervals generated from 
the perfect transient analysis runs of the Case 1 systems. 
Readers should recall from the methodology section that two 
types of run lengths are performed after the perfect transient 
point is identified.  
 
The first, (a), is run at the original run length with a warm-up 
period set at the perfect transient point. Thus, the total 
simulated time is the original run length, but the output data 
collected from each replication have the transient data deleted 
from the run. The second, (b), is run with the total simulated 
time equal to the original run length plus the perfect transient 
point. The net effect is that (b) will have steady-state data 
collected for the original run length’s time units while (a) will 
have less steady-state data collected. A ‘--’ symbol indicates 
that a perfect transient point could not be found for the run 
length of (a) (see Table 2). A shaded box indicates a run length 
that does not apply for that ρ.  
 
All confidence intervals generated contain Wq, and, except for 
two sets of confidence intervals (ie ρ=0.75 with original run 
length at 100,000 and ρ=0.90 with original run length at 
1,000,000), the precision of the (a) confidence intervals is the 
same or better than the precision of the confidence intervals of 
(b). Then, there seems to be no advantage to increasing the run 
length for steady-state data collection once perfect transient is 
deleted. As with the previous results of Table 5, precision 
improves as run length increases. 
 
Table 6: 95% confidence intervals generated via perfect 
transient analysis at two run lengths for Case 1 systems: (a) 
original run length and (b) original run length + perfect 
transient point. 
 

ρ=0.50 ρ=0.75 ρ=0.90 
 

      M/M/1 
           Wq 

Original 
Run Length 0.500 2.250 8.100 

6,000         (a) -- 
 

-- 
 

-- 
 

                  (b) -- 
 

-- 
 

-- 
 

20,000       (a) 0.488+/-
0.012 

2.264+/-
0.054 

-- 
 

                  (b) 0.496+/-
0.013 

2.266+/-
0.057 

-- 
 

50,000       (a) 0.500+/-
0.005 

2.261+/-
0.044 

-- 
 

                  (b) 0.511+/-
0.005 

2.257+/-
0.044 

-- 
 

100,000     (a) 0.501+/-
0.003 

2.289+/-
0.050 

-- 
 

                  (b) 0.501+/-
0.003 

2.269+/-
0.023 

-- 
 

1,000,000  (a)   8.087+/-
0.094 

                  (b)   8.112+/-
0.076 
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Tables 7 and 8 reveal the results of the analysis for the Case 2 
systems. As with the Case 1 systems, the same trends exist for 
the Case 2 systems’ confidence intervals: 
 
• For the worst-case scenario and perfect run lengths (see 

Table 7), there is no advantage to attaining perfect run 
length in terms of generating a confidence interval that 
contains Wq; also, as the run length increases, the 
precision of the confidence interval improves; 

• For the perfect transient runs (see Table 8), there seems to 
be no obvious advantage to increasing the run length for 
steady-state data collection once perfect transient is 
deleted; as with all previous results, precision improves as 
the run length increases. 

 
Table 7: 95% confidence intervals of worst-case transient 
analysis run lengths and perfect run lengths for Case 2 systems. 
 

s=5 s=6     M/M/s 
Wq 

Run Length 1.108 0.285 
6,000 1.140+/-0.092 0.294+/-0.026 
11,218.90 1.154+/-0.054  
20,000 1.138+/-0.041 0.298+/-0.013 
50,000 1.117+/-0.026 0.290+/-0.007 
100,000 1.114+/-0.018 0.286+/-0.005 
310,498.33  0.286+/-0.002 
500,000  0.286+/-0.002 

 
Table 8: 95% confidence intervals generated via perfect 
transient analysis at two run lengths for Case 2 systems: (a) 
original run length and (b) original run length + perfect 
transient point. 
 

s=5 s=6 
 

 M/M/1 
                     Wq 
Original         
Run Length 1.108 0.285 

6,000         (a) -- 0.299+/-0.028 
                  (b) -- 0.299+/-0.026 
20,000       (a) -- 0.288+/-0.012 
                  (b) -- 0.288+/-0.015 
50,000       (a) 1.102+/-0.095 0.283+/-0.007 
                  (b) 1.101+/-0.103 0.282+/-0.008 
100,000     (a) 1.104+/-0.016 0.282+/-0.004 
                  (b) 1.103+/-0.018 0.285+/-0.004 
500,000     (a)  0.284+/-0.002 
                  (b)  0.284+/-0.002 

 
CONCLUSIONS AND FUTURE RESEARCH 
 
Granted, the confidence intervals generated are for only one set 
of 20 replications each, while coverage analysis requires 
several sets of 20 replications to predict the accuracy of 
confidence intervals’ coverage (see ref. [4]), but this is not the 
intention of the experiments. The objective of the experiments 
is to convey to undergraduate students the danger of not 
performing transient analysis when estimating an unknown 
parameter for a non-terminating system.  
 
The method of independent replications was chosen since it 
tends to be more readily understood by undergraduate students 
than, say, the batch means method [2]. Additionally, the 
method (independent replications) tends to suffer from 

initialisation bias and thus, performing transient analysis 
should help to reduce the bias. 
 
Since transient analysis relies on ad-hoc techniques, students 
tend to have difficulty in applying the techniques and 
justifying/validating the results [2]. Two types of queuing 
systems have been selected that are typically taught in a 
stochastic operations research course to illustrate transient 
analysis issues. Surprisingly, very little evidence was found to 
support the fact that performing transient analysis would lead 
to better confidence intervals. That is, even when transient 
analysis is ignored, the true mean is contained within the 
confidence interval and usually with greater precision.  
 
Table 9 also supports this finding. Here, the equivalent run 
lengths for the Case 1 systems are compared by restating the 
results found in Tables 5 and 6. For the (b) confidence intervals 
of Table 6, the total run length is the original run length plus 
the time unit of the perfect transient point. So, the (b) 
confidence intervals have the same amount of data collected (in 
terms of time) over the run as the worst-case transient analysis 
run length times of Table 5.  
 
Table 9: 95% half-widths of worst-case transient analysis 
versus perfect transient analysis at equivalent run lengths for 
Case 1 systems. 
 

Equivalent Run 
Length 

Worst-Case Transient 
Analysis (see Table 5) 

(b) Run Length 
(see Table 6) 

ρ=0.50 
6,000 0.019 -- 
20,000 0.008 0.013 
50,000 0.007 0.005 
100,000 0.003 0.003 

ρ=0.75 
6,000 0.095* -- 
20,000 0.050 0.057 
50,000 0.042 0.044 
100,000 0.028 0.023 

ρ=0.90 
6,000 0.810 -- 
20,000 0.446 -- 
50,000 0.230 -- 
100,000 0.176 -- 
1,000,000 0.069 0.076 

 
However, readers should recall that the worst-case transient 
analysis occurs when no transient is deleted. So, in theory, the 
(b) generated confidence intervals should be better than the 
confidence intervals generated under the equivalent worst-case 
transient analysis run length, since they contain steady-state 
data. Readers should also recall, as displayed in Table 9, that a 
‘--’ symbol indicates that a perfect transient point could not be 
found for the run length and only the (*) confidence interval 
did not contain Wq. Then, in general, the best half-width occurs 
when no transient is deleted.  
 
In fact, the worst-case transient analysis runs generated more 
valid (Wq is within the confidence interval) confidence 
intervals at shorter run lengths than (b) (since perfect transient 
could not be found at the shorter run lengths). So, the runs with 
no transient deleted generated 12 valid confidence intervals, 
while the steady-state runs only generated seven valid 
confidence intervals.  
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For the seven valid confidence intervals generated via the 
steady-state runs, the runs with no transient deleted generated 
confidence intervals with equal or better precision five out of 
those seven times. The same comparison (see Table 10), when 
performed for the Case 2 systems, yields similar, if not better, 
results. 
 
Table 10: 95% half-widths of worst-case transient analysis 
versus perfect transient analysis at equivalent run lengths for 
Case 2 systems. 
 

Equivalent Run 
Length 

Worst-Case Transient 
Analysis (see Table 7) 

(b) Run Length 
(see Table 8) 

s=5 
6,000 0.092 -- 
20,000 0.041 -- 
50,000 0.026 0.103 
100,000 0.018 0.018 

s=6 
6,000 0.026 0.026 
20,000 0.013 0.015 
50,000 0.007 0.008 
100,000 0.002 0.004 
500,000 0.002 0.002 

 
Thus, the question is posed: at the undergraduate level, should 
transient analysis be taught when teaching the method of 
independent replications? The authors’ conclusion is yes, but 
with the following emphases: 
 
• Transient analysis is an ad-hoc methodology and, as such, 

there is no guarantee that the confidence interval 
generated will be better (greater precision) than a 
confidence interval generated when transient data are 
present; 

• Run length seems to be the most important factor when 
trying to obtain confidence intervals containing the true 
mean. 

 
It is the authors’ opinion that strong emphasis should be placed 
on the run length. It seems that, at least, for the systems 
studied, transient data, whether present or not, have very little 
impact on the validity of the confidence interval. However, run 
length does seem to impact significantly. So, the student should 
come away with the realisation that running the simulation 
 

long enough is much more important than identifying steady-
state behaviour. 
 
The confidence intervals were generated via the method of 
independent replications. Future research will be aimed at the 
impact of transient analysis when utilising the batch means 
method. The authors’ prediction is that, since the batch means 
method is a single-replication method (see refs [4] or [6]), 
determining the perfect transient point will assist in providing a 
better confidence interval than if transient analysis is 
performed badly.  
 
However, the authors are not comfortable with the same 
prediction for perfect run length analysis since, if independent 
batches can be generated, at least one of the batches will 
contain transient data in the sample (or batch) mean. 
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